The spectral main sequence of human saccades.
نویسندگان
چکیده
Despite the many models of saccadic eye movements, little attention has been paid to the shape of saccade trajectories. Some investigators have argued that saccades are driven by a rectangular "bang-bang" neural control signal, whereas others have emphasized the similarity to fast arm movement trajectories, such as the "minimum jerk" profile. However, models have not been tested rigorously against empirical trajectories. We examined the Fourier transforms of saccades and compared them with theoretical models. Horizontal saccades were recorded from 10 healthy subjects. The Fourier transform of each saccade was accurately computed using a padded fast Fourier transform (FFT), and the frequencies of the first three minima (M1, M2, M3) in each energy spectrum were measured to a precision of 0.12 Hz. Each subject showed near-linear trends in the relationships among M1, M2, and M3 and the reciprocal of duration (1/T), which we call the "spectral main sequence." Extrapolation of plots did not pass through the origin, indicating a subtle departure from self-similarity. Bivariate confidence regions were established to allow for slope-intercept variability. The nonharmonic relationships seen cannot arise from a rectangular saccadic pulse driving a linear ocular plant. The relationships are also incompatible with minimum acceleration, minimum jerk, or higher-order minimum square derivative trajectories. The best fits were made by trajectories that minimize postmovement variance with signal-dependent noise (). It is concluded that the spectral main sequence is exquisitely sensitive to the saccade trajectory and should be used to test objectively all present and future models of saccades.
منابع مشابه
Time-optimality and the spectral overlap of saccadic eye movements.
Saccades exhibit remarkably stereotypical motor behavior, both in their bell-shaped velocity trajectories and in their peak velocity–amplitude and duration–amplitude relationships (the “main sequence”). It is sometimes assumed that this is the result of the system optimizing for movement duration, although no direct empirical evidence as such exists. However, formal time-optimal (“bang-bang”) m...
متن کاملThe main sequence of human optokinetic afternystagmus (OKAN).
Different types of fast eye movements, including saccades and fast phases of optokinetic nystagmus (OKN) and optokinetic afternystagmus (OKAN), are coded by only partially overlapping neural networks. This is a likely cause for the differences that have been reported for the dynamic parameters of fast eye movements. The dependence of two of these parameters-peak velocity and duration-on saccadi...
متن کاملComparison of the main sequence of reflexive saccades and the quick phases of optokinetic nystagmus.
BACKGROUND/AIMS Abnormalities in the saccadic main sequence are an important finding and may indicate pathology of the ocular motor periphery or central neurological disorders. In young or uncooperative patients it can be difficult eliciting a sufficient number of saccades to measure the main sequence. It is often assumed that the quick phases of optokinetic nystagmus (OKN) are identical to sac...
متن کاملOverlapping saccades and glissades are produced by fatigue in the saccadic eye movement system.
Saccadic eye movements and their neurological control signals change significantly as the human fatigues. Electronic instrumentation with a bandwidth extending from DC to 1 kHz enabled the recording of anomalous looking saccadic eye movements that occurred as the subject's physiological state changed. Fatigue can produce: overlapping saccades in which the high-frequency saccadic bursts should s...
متن کاملA new family in the stable homotopy groups of spheres
Let $p$ be a prime number greater than three. In this paper, we prove the existence of a new family of homotopy elements in the stable homotopy groups of spheres $pi_{ast}(S)$ which is represented by $h_nh_mtilde{beta}_{s+2}in {rm Ext}_A^{s+4, q[p^n+p^m+(s+2)p+(s+1)]+s}(mathbb{Z}_p,mathbb{Z}_p)$ up to nonzero scalar in the Adams spectral sequence, where $ngeq m+2>5$, $0leq sExt}_A^{s+2,q[(s+2)p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 19 20 شماره
صفحات -
تاریخ انتشار 1999